追梦大飞机,永不止步

○汤家力(2000级力学)

2000年进入清华大学工程力学系深 诰,对我而言是有些许幸运的。清华园 里的学习生活相当紧张,身边总有一些 无论如何都追赶不上的"大牛",只能日 复一日地伴随着自习室关灯的音乐结束充 实的一天。等到了研究生阶段,有机会接 触到国内外先进制造企业的合作课题,渐 渐认识到在工程应用研究方面国内外的差 距。于是, "帮助国内先进制造业赶超国 际一流水平"就成为了我当时唯一的择业 方向。恰逢中国商飞公司刚刚成立,我在 2009年博士毕业时,毫不犹豫地选择了自 己人生的下一个航段。

迎难而上 广师求益

再次感谢自己的幸运, 也感谢这个奋 进的时代, 我在入职后不久就有机会深度 参与ARJ21支线飞机的2.5g全尺寸静力试 验。对国内航空工业而言,这种程度的全 机级复杂试验不多见,有一定的积累和 经验。但当时美国联邦航空局FAA正在对 ARJ21型号开展影子审查,他们针对这个 静力试验提出了一个问题: 机翼上的试验 载荷是垂直地面加载的,这样模拟的载荷 是否真实?

这个问题从根本上否定了国内传统试 验载荷设计中的线性假设, 需要运用数值 方法进行非线性的复杂计算才能回答。

项目进度刻不容缓, 而相关的参考资 料几乎为零。刚刚入职的我凭借在清华园 打下的扎实数理基础和编程能力, 在短短 一个月时间里,从工程力学的基本假设出

汤家力校友

发,重新推导了机翼试验载荷,并编写了 专用的计算软件。当我把全新的试验载荷 计算方法和结果给FAA审查代表进行汇报 后,得到的答复只有一句: "Great!"

2010年6月,入职不到一年的我就这 样打破了国内近五十年的业界传统, 使得 中国的大型飞机全机静力试验进入了"垂 直机翼弦平面加载"的时代,一举追上了 国际一流水平。这个小小的成就, 也让我 迅速地在公司内小有名气。

之后,伴随着ARJ21的型号研制进 展,我开始负责越来越多的技术难题,也 在工作中运用自己的扎实基础、学习能力 和创新思维, 攻克了一个又一个难关。在 解决机翼某结构裂纹故障时, 我创新性地 结合了振动测量数据和疲劳分析工程算 法,为故障定位提供了高效的计算工具, 打开了裂纹故障的"黑匣子": 在进行复 合材料结构全尺寸疲劳试验设计时, 我又 通过对传统"雨流计数"方法在复合材料 结构上的创新应用,把试验周期从一年多缩 短到了两个月,为国家节省了大量经费。

□ 我与清华

型号的历练让我几乎每天都在学习, 都在思考,都在成长,迅速地从一个新人成 长为了技术骨干, 也凭借突出的贡献获评全 国青年岗位能手、上海市杰出青年岗位能 手、中国商飞公司十大青年英才等荣誉。

精益求精 厚积薄发

从2012年起,我开始承担更为重要的 工作,成为了一个团队负责人。虽然在校 园里也会时常与师兄弟合作完成科研任 务,但在企业里带领一个团队则完全是 新鲜的体验。一方面, 你需要在技术上做 好带头人和决策者,在面对一个个技术难 关时带领团队找到正确的前进方向:另一 方面, 你需要在管理上做好协调者和组织 者,和兄弟团队一起并肩作战。

负责C919机翼强度设计时, 我和同 事们针对每一个结构细节反复推敲, "斤 斤计较"地为节省飞机的每一克重量而努 力;负责全机结构项目管理工作时,我又 不断借鉴国际先进经验, 在团队内部推行 高效的管理方法和工具。就这样, 我在征 途中不停地跋涉着,因为"追赶制造业世 界一流水平"的目标从来没有动摇过。

2016年起, 我开始负责C919飞机的 复合材料结构研制工作,这在当时是横在 型号面前的一个重大"拦路虎"。由于国 内工业基础的薄弱,对"正向设计"认识 的不深入不全面, 多家供应商的产品质量 均无法符合预期。我深知此时要面对的已 不止是中国商飞自身的困难, 更是国内航 空制造业多年的顽疾。但我和我的团队坚 定地相信"实践出真知",一方面学习国 外成功经验和模式,掌握底层的逻辑和原 理;另一方面结合国内实际情况对研制方 案进行不断的调整和摸索, 几乎每周都有 新问题,每周都有新变化。

就在持续不断的摸索、碰壁、总结、 优化、调整、再探索之后,经过近3年的 持续攻关,我们终于把C919飞机复合材料 结构的成熟度提升到了令人满意的水平。 不仅如此,与我们合作的国内资深航空制 造企业和业界专家也都深深地认同了中国 商飞复合材料研制模式,我们的努力正在 由量变转变为质变。

学无止境 探索未来

经过公司上下的不懈努力, C919这 一承载着国人梦想的民用大型飞机即将取 证,实现商业运营已指目可待。而2021年 起,我又有了新的岗位和使命。作为公司 复合材料设计副总师, 我开始需要更多地 思考未来技术的发展和变革。

2021年7月,我有幸再次回到清华 园,在母校接受了一个月的"技术前沿" 课程学习,对"工业互联网""区块 链""大数据""工业机器人""系统工 程"等科学技术前沿有了全新的认识和了 解,很多理念得到了冲刷和更新,并深刻 地感到要做的研究更多了、更急迫了。

随着ARJ21的运营绩效日益增长,随

新中国三代民用飞机设计师参加央视《朗 读者》节目, 左起: 赵克良、程不时(1951 届航空)、汤家力

着C919的交付运营准备日益到位,在过去的13年间,中国商飞一直不断努力使自己成为世界一流航空制造企业。虽然目前我们距离波音、空客还有不少的差距,但我们的眼光已经不止于追赶,而着眼在了超越。颠覆目前航空制造业的未来技术会是哪些?引发新一代革命性变革的技术又有

哪些?有幸在中国商飞,有很多同事和我一起在思考、在尝试、在实践。我现在和我的团队讨论最多的话题,就是"十年后我们在做什么?"

新的征程又一次开启,而我也乐意再一次接受挑战。毕竟,只要坚定地从最基础的事情开始做起,面对未来,我就毫不畏惧!

九年核研路 不负少年心

○孙永铎(2003级化学)

离开清华园,来到位于天府之国的中国核动力研究设计院工作已经整整九年了。而恰好,九年也是我在清华园里度过的时光。两个九年,是从一个起点到另一个起点。

还记得在毕业前的启航大会上,我说"要以实际行动响应母校的号召,到祖国最需要的地方去,上大舞台、做大事业"。几个月后,新员工入职仪式上,我说"以我所学,尽我所能,为核动力事业发展添砖加瓦",也算是为自己许下一个承诺。十年可见春去秋来,我很庆幸,毕业至今一直走在当初选择的路上。

行胜于言,不负少年心

2003年7月,我比大部分同学提前半个月来到了梦想中的清华园,参加了学校组织的新生党员培训,其中重要一课就是观看学习系列纪录片《我愿以身许国: "两弹一星"元勋中的清华人》。学长前辈隐姓埋名、爱国奉献的事迹和精神深深震撼了我,或许正是从那个时候起,我和核工业的缘分就像一颗小小的种子,在不知不觉间被埋下。

孙永铎校友(右2)与同事讨论项目技术方案

博士期间我从事的是有机小分子电致 发光方面的研究,如果不出意外,毕业后 最好的选择就是继续在有机半导体行业发 光发热。所以求职的过程中,我把主要目 标放在了高校、研究院所的半导体材料相 关科研岗位,也拿到了两个不错的offer。 但听了核动力院的宣讲之后,我认识到可 核动力技术的重要性,更认识到材料问题 是关键瓶颈,我强烈地想为反应堆材料研 究尽一份自己的力量。这一刻,多年前埋 下的那颗种子突然萌芽,破土而出。

让我下决心选择核工业的另一个重要 因素是我的导师。他的经历和研究工作真 正诠释了"要将个人成长和事业发展与国