“因为在充放电过程中体积变化巨大,锡电极很难保持机械完整性。假如这个问题可以通过我们提出的方案解决,其他面临同样问题的材料,也能用类似方法去设计锂电池的表面保护层。”美国中佛罗里达大学教授、亚历山大•冯•洪堡学者、华人科学家杨阳谈及该团队的最新研究时,向 DeepTech 说道。
杨阳(2006-2010年在清华大学材料科学与工程系就读,获博士学位)
近日,该团队的论文《通过铜—锡金属间化合物涂层结构重建锡阳极的稳定性》(Stabilization of Sn Anodethrough Structural Reconstruction of a Cu–SnIntermetallic Coating Layer)发表在 Advanced Materials 上。
本次的项目突破,主要在于为电池的一个电极涂上了一层新的保护涂层——铜锡薄膜,应用在锡阳极上,这将在整个充电过程中,可以保持电极的稳定。同时,能显著减缓电池的退化,抑制电极粉末化的问题,并能使电池在更长的时间内保持更大的电量。
“我们的研究工作已经表明,这种薄膜的阳极降解率比通常使用的锡薄膜的减少逾1000%。”杨阳表示。
据了解,杨阳目前在UCF 纳米科学技术中心,所带领的团队的研究兴趣包括先进材料以及可再生能源设备、环境科学和智能电子领域的应用,专注于设计和合成具有精确控制的化学成分和形态的高度有序的多孔膜、新的电化学、电子和光学,并探索这些先进材料中产生的最新尖端技术。
以解决锡材料体积变化为突破点
人类从事锂电池的研发已经有很长时间,尤其在去年,2019 年诺贝尔化学奖分别授予约翰•B•古迪纳夫(JohnB. Goodenough)、斯坦利•威廷汉(M.Stanley Whittingham) 和吉野彰(Akira Yoshino),锂电池的发展再次强势引起科技产业的重点关注。
追本溯源,上世纪 70 年代,惠廷厄姆发现由二硫化钛制成的材料可以嵌入锂离子,被用作锂电池中的阴极。古迪纳夫推测,可以用金属氧化物来替代金属硫化物制造阴极,经过系统研究,在 1980 年证明了嵌入锂离子的氧化钴可以产生 4 伏的电压。在此基础上,吉野彰使用了焦炭,这种碳材料可以像氧化钴一样提供容纳锂离子的空间,锂离子在阴阳极之间运动可以产生电流。
由此,一个轻巧耐用、在性能下降前可充放电数百次的电池正式产生。锂离子电池于 1991 年首次进入市场,也奠定了无线、无化石燃料社会的基础。
对此,杨阳称:“所有的创新在刚开始出现时,科学上的东西多一点,技术略微成熟后,工程上的东西更多。但是科学和工程上的痛点和挑战一直都存在,锂电池也是如此。”
锂电的能量密度有一定的限制。材料越新,能量密度越大,等待科学解决的东西也越多。
“现在大家研究硅比较多,锡和硅都是合金化储能的机理。锂离子反复嵌入脱出的过程中,它会有非常巨大的体积变化,不能再保持机械完整性,循环时可能有些材料会脱离电解材料主体,造成破损或者出现缺陷,从而导电池寿命降低。”杨阳表示。
而本次研究的工作原理是,在金属锡阳极表面涂覆了一层铜锡合金。由于铜锡合金充放电过程中会重新分相,锡可以更容易地和锂形成合金,在和锂形成合金的过程中,这两种金属元素合金内部都有可能分离出来。这个过程比较缓慢,一旦形成这种分相,由于铜可以一直包覆在锡周围,它能自然地形成一种缓冲层缓解电极体积变化。
通过铜锡合金表面重构的过程,会限制锡本身积蓄的体积变化的问题,从而解决潜在的电池寿命问题。
图 | 合金化/脱合金行为示意图(来源:受访者)
其中,图 a 为纯锡膜阳极,不均匀的锂化 / 脱硅,体积变化严重,导致电极开裂和粉化;图 b 为铜–锡 @锡,金属铜在锂化 / 脱硅循环过程中,逐渐均匀地析出并分布在铜–锡 - ICL 中,进一步促进了锡的均匀化。
图 | 显微镜下的铜–锡 @锡阳极的表面形貌、结构和力学性能示意图(来源:受访者)
因为铜锡是一种金属材料,铜锡在形成合金时,它有各种不同组分的铜锡形成,所以杨阳调控了不同组分的铜锡合金,系统地研究了铜锡的具体比例对保护层的影响,得出了效果最好的铜锡合金。
图 | 铜–锡 @锡阳极的电化学运动分析示意图(来源:受访者)
由于每种不金属材料的技术性能不一样,以合金为例,多加一点铜,多加一点锡,都会给材料本身的性能带来影响。因此,调整电池的容量和稳定性以及如何平衡这种关系,他也用了较长的时间去攻克,使锂电池更安全,并能承受极端温度。
朝着一条路一直走下去
本硕博读的都是材料学专业的杨阳,本身就对各种材料的组分和应用很感兴趣,乐此不疲。尤其是在清华读博期间,他养成了独立科研的兴趣和能力,对自己未来的职业规划也有了更清晰的认识。
毕业之后,杨阳在德国埃尔朗根-纽伦堡大学从事洪堡学者研究,两年时间内,他得到了更系统的培训与认知,研究课题主要围绕电化学制备、电池方面拓展薄膜材料应用。
考虑到德国是非英语国家,交流相对闭塞,为了更深入的研究,杨阳打定主意,选择了莱斯大学,做另外一站的博后。
在此期间,杨阳师从James M. Tour,Tour 是美籍犹太裔合成有机化学家,迄今发表了 700 多篇研究论文,拥有 140 多个专利系列,主要研究方向是石墨烯储能及新能源材料开发。
他加入之后,开始着手石墨烯、薄膜材料以及电化学应用进行高度融合创新。
图 | 在实验室里的杨阳
可以说,从 2015 年起,杨阳一直在特色薄膜材料领域深耕。而铜锡薄膜的成果起源就是他在薄膜材料的独有见解,以及薄膜材料在不同方向的拓展,包括能源、催化、环境和电子材料等领域,现在的精力依然集中于开发新型功能材料以及应用。
“关于薄膜制备工艺和技术,我们组的特色鲜明,成果斐然。本次的研究成果也是相关材料的拓展,将薄膜材料的特性体现在了储能方面。”杨阳坦言。
新材料有望解决成本瓶颈
如今,轻巧、可充电且能量强大的锂离子电池,已在全球范围内被应用于手机、笔记本电脑、电动汽车等各种移动设备,以快充为主。
杨阳所在实验室的材料制备,绝大部分采用电化学方法,其最大优势是一旦产业化,会比较容易实现。从小规模实验室制备到大规模生产时,除了安全性,还存在寿命问题。
而实验室的存在,就是要解决科学的问题。
杨阳告诉DeepTech,本次研究中,基础研究占 40%,应用研究占60%。不管是储能,还是催化剂、燃料电池等能源转化工作,除了解决基础的技术性问题之外,怎么实现批量可重复生产,也是他的研重点。
常规的锂电制备过程,大多以粉体材料为主,生产线已经非常成熟。让企业换一套新体系,因投入大,以及对风险心存恐惧,厂商要下很大决心。这种薄膜材料制备方法简单易行,重复性高,质量监控容易,成本会更低,具有极高商业价值。
据悉,这种电池设计除适合于智能手机之外,在电动汽车或电动卡车的应用上,更能体现本身优势。
“由于开发的这种薄膜材料,非常薄,在单位体积内,它能提供的电量会更大。举个例子,维持一辆电动汽车,每1000公里耗电是恒定的情况下,可以放更少的电池进去。”杨阳表示。
未来,它有希望提高手机续航能力,或让电动汽车在不充电的情况开得更远,这可能就是科学研究所带来的实用价值的最好体现。